Use new algorithm to run the batch processing ============================================= Create the calculator --------------------- All the data processing is done by the ``Calculator``. The input data and output data are stored in its attributes. .. code:: ipython3 from crystalmapping.utils import Calculator calculator = Calculator() Load the experiment Data ------------------------ In this example, we load the data from a database. You can also use your data source as long as there is an ``DataArray`` of the exposure images. .. code:: ipython3 from databroker import catalog list(catalog) .. parsed-literal:: ['test_data_in_database', 'analysis', 'bt_safN_306132', 'pdf', 'saf_307381', 'xpd'] .. code:: ipython3 db = catalog["xpd"] .. code:: ipython3 UID = '257b5581-ca78-4309-9c50-b4d65d80152a' run = db[UID] run .. parsed-literal:: BlueskyRun uid='257b5581-ca78-4309-9c50-b4d65d80152a' exit_status='success' 2021-03-19 22:48:19.253 -- 2021-03-19 23:13:41.753 Streams: * primary .. code:: ipython3 data = run.primary.to_dask() data .. raw:: html
<xarray.Dataset>
    Dimensions:              (dim_0: 1, dim_1: 3888, dim_2: 3072, time: 1001)
    Coordinates:
      * time                 (time) float64 1.616e+09 1.616e+09 ... 1.616e+09
    Dimensions without coordinates: dim_0, dim_1, dim_2
    Data variables:
        dexela_stats1_total  (time) float64 dask.array<chunksize=(1,), meta=np.ndarray>
        dexela_image         (time, dim_0, dim_1, dim_2) float64 dask.array<chunksize=(1, 1, 3888, 3072), meta=np.ndarray>
        mPhi                 (time) float64 dask.array<chunksize=(1,), meta=np.ndarray>
        mPhi_user_setpoint   (time) float64 dask.array<chunksize=(1,), meta=np.ndarray>
Here, we give the data to the attribute. .. code:: ipython3 calculator.frames_arr = data["dexela_image"][::10] calculator.frames_arr .. raw:: html
<xarray.DataArray 'dexela_image' (time: 101, dim_0: 1, dim_1: 3888, dim_2: 3072)>
    dask.array<getitem, shape=(101, 1, 3888, 3072), dtype=float64, chunksize=(1, 1, 3888, 3072), chunktype=numpy.ndarray>
    Coordinates:
      * time     (time) float64 1.616e+09 1.616e+09 ... 1.616e+09 1.616e+09
    Dimensions without coordinates: dim_0, dim_1, dim_2
    Attributes:
        object:   dexela
We also need the metadata of the grid scan, especially the ``shape`` of the grid. If not provided, the calculation can still be done but the coordinates of the grain map is unknown. .. code:: ipython3 # show the metadata metadata = dict(run.metadata["start"]) # Because I terminate the data. I nedd to update the metadata. metadata["shape"] = [101] metadata["extents"] = ([-0.5, 0.499],) calculator.metadata = metadata calculator.metadata .. parsed-literal:: {'time': 1616208499.2537348, 'uid': '257b5581-ca78-4309-9c50-b4d65d80152a', 'versions': {'ophyd': '1.3.3', 'bluesky': '1.6.7'}, 'scan_id': 45, 'proposal_id': '307690', 'plan_type': 'generator', 'plan_name': 'rel_grid_scan', 'detectors': ['dexela'], 'motors': ['mPhi'], 'num_points': 1001, 'num_intervals': 1000, 'plan_args': {'detectors': ["XPDDDexelaDetector(prefix='XF:28IDD-ES:2{Det:DEX}', name='dexela', read_attrs=['stats1', 'stats1.total', 'tiff'], configuration_attrs=['cam', 'cam.acquire_period', 'cam.acquire_time', 'cam.image_mode', 'cam.trigger_mode', 'stats1', 'stats1.configuration_names', 'stats1.port_name', 'stats1.asyn_pipeline_config', 'stats1.blocking_callbacks', 'stats1.enable', 'stats1.nd_array_port', 'stats1.plugin_type', 'stats1.bgd_width', 'stats1.centroid_threshold', 'stats1.compute_centroid', 'stats1.compute_histogram', 'stats1.compute_profiles', 'stats1.compute_statistics', 'stats1.hist_max', 'stats1.hist_min', 'stats1.hist_size', 'stats1.profile_cursor', 'stats1.profile_size', 'stats1.ts_num_points', 'tiff', 'detector_type'])"], 'args': ["EpicsMotor(prefix='XF:28IDD-ES:2{Stg:Stack-Ax:Phi}Mtr', name='mPhi', settle_time=0.0, timeout=None, read_attrs=['user_readback', 'user_setpoint'], configuration_attrs=['user_offset', 'user_offset_dir', 'velocity', 'acceleration', 'motor_egu'])", -0.5, 0.5, 1001], 'per_step': 'None'}, 'hints': {'gridding': 'rectilinear', 'dimensions': [[['mPhi'], 'primary']]}, 'shape': [101], 'extents': ([-0.5, 0.499],), 'snaking': [False], 'plan_pattern': 'outer_product', 'plan_pattern_args': {'args': ["EpicsMotor(prefix='XF:28IDD-ES:2{Stg:Stack-Ax:Phi}Mtr', name='mPhi', settle_time=0.0, timeout=None, read_attrs=['user_readback', 'user_setpoint'], configuration_attrs=['user_offset', 'user_offset_dir', 'velocity', 'acceleration', 'motor_egu'])", -0.5, 0.5, 1001]}, 'plan_pattern_module': 'bluesky.plan_patterns', 'task': 'a single point rocking curve', 'sample': 'PARADIM-2', 'beam': 'slit'} We can also apply the geometry of the experiment to let the calculator calculate the Q value of the peaks. This is optional. .. code:: ipython3 from pyFAI.azimuthalIntegrator import AzimuthalIntegrator calculator.ai = AzimuthalIntegrator(dist=200, wavelength=0.186, detector="dexela2923", poni1=1536, poni2=1944) Process the data ---------------- The simplest way to use the calculator is to use the ``auto_process``. It takes three necessary parameters. You will find the meaning of them in the docs. .. code:: ipython3 help(calculator.auto_process) .. parsed-literal:: Help on method auto_process in module crystalmapping.utils: auto_process(num_wins: int, hw_wins: int, diameter: int, index_filter: slice = None, \*args, \*\*kwargs) -> None method of crystalmapping.utils.Calculator instance Automatically process the data in the standard protocol. Parameters ---------- num_wins : int The number of windows. hw_wins : int The half width of the windows in pixels. diameter : int The diameter of the kernel to use in peak finding in pixels. It must be an odd integer. index_filter : slice The index slice of the data to use in the calculation of the dark and light image. args : The position arguments of the peak finding function `trackpy.locate`. kwargs : The keyword arguments of the peak finding function `trackpy.locate`. Returns ------- None. The calculation results are saved in attributes. Here we process the data. The new algorithm is a two-run-through algorithm so there are two status bars. First one show the status of the calculation of light and dark image and the second one shows the status of the calculation of the crystal maps. .. code:: ipython3 calculator.auto_process(num_wins=4, hw_wins=25, diameter=41) .. parsed-literal:: 100%|██████████| 100/100 [00:37<00:00, 2.65it/s] 100%|██████████| 101/101 [00:28<00:00, 3.53it/s] Visualize the data ------------------ All the final, intermediate and raw data can be visualized. The methods to visualize them starts with “show”. Here, we show two examples. Here, we show the windows on the dark subtracted light image. .. code:: ipython3 calculator.show_windows(vmax=500, size=8); .. image:: _static/01_analysis_example_code_20_0.png Then, we show the final rocking curves plot, where are the one dimensional crystal maps. .. code:: ipython3 calculator.show_intensity(); .. image:: _static/01_analysis_example_code_22_0.png Save the data ------------- The data can be converted to ``DataSet`` and you can save it in multiple formats. .. code:: ipython3 ds = calculator.to_dataset() ds .. raw:: html
<xarray.Dataset>
    Dimensions:    (dim_0: 101, grain: 4, pixel_x: 3072, pixel_y: 3888)
    Coordinates:
      * grain      (grain) int64 3 2 1 0
      * dim_0      (dim_0) float64 -0.5 -0.49 -0.48 -0.47 ... 0.479 0.489 0.499
    Dimensions without coordinates: pixel_x, pixel_y
    Data variables:
        dark       (pixel_y, pixel_x) float64 300.0 303.0 300.0 ... 297.0 311.0
        light      (pixel_y, pixel_x) float64 339.0 339.0 336.0 ... 332.0 341.0
        intensity  (grain, dim_0) float64 65.69 83.61 92.62 ... 17.92 18.29 17.96
        y          (grain) int64 3809 3334 2712 1595
        dy         (grain) int64 25 25 25 25
        x          (grain) int64 200 1437 1890 109
        dx         (grain) int64 25 25 25 25
        Q          (grain) float64 4.38e-08 4.38e-08 4.38e-08 4.38e-08
    Attributes: (12/22)
        time:                 1616208499.2537348
        uid:                  257b5581-ca78-4309-9c50-b4d65d80152a
        versions:             {'ophyd': '1.3.3', 'bluesky': '1.6.7'}
        scan_id:              45
        proposal_id:          307690
        plan_type:            generator
        ...                   ...
        plan_pattern:         outer_product
        plan_pattern_args:    {'args': ["EpicsMotor(prefix='XF:28IDD-ES:2{Stg:Sta...
        plan_pattern_module:  bluesky.plan_patterns
        task:                 a single point rocking curve
        sample:               PARADIM-2
        beam:                 slit
Here, we save it in ``NetCDF`` format. Before it is saved, the ``attrs`` need to be cleaned. .. code:: ipython3 ds.attrs = {} ds.to_netcdf("data/example.nc") Load the dataset and visualize it --------------------------------- The data can be loaded and visualized again after the data processing session is over. .. code:: ipython3 import xarray as xr ds = xr.load_dataset("data/example.nc") .. code:: ipython3 calculator.auto_visualize(ds); .. image:: _static/01_analysis_example_code_29_0.png